Trigonal Prismatic Co-ordination of Nickel in the [Fluoroborotris-(2-carboxaldimino-6-pyridyl)phosphine]nickel(II) Cation

By Melvyn R. Churchill* \dagger and Arthur H. Reis, jun.
(Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138)

Summary A single-crystal X-ray diffraction study of $\left[\left\{\mathrm{FB}\left(\mathrm{ONCH} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{NiII}+\right]\left[\mathrm{BF}_{4}{ }^{-}\right]$shows the cation to have $C_{3 v}$ symmetry with the nickel atom in essentially trigonal-prismatic co-ordination to six nitrogen atoms.

Trigonal-prismatic co-ordination of metal ions in the layer-structures MoS_{2} and WS_{2} was reported in $1923,{ }^{1}$ but more than forty years elapsed before a discrete molecular species, $\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{3}$, was shown to have this co-ordination geometry; ${ }^{2}$ recent crystallographic studies have shown that $\mathrm{Mo}\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{H}_{2}\right)_{3}{ }^{3}$ and $\mathrm{V}\left(\mathrm{S}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}\right)_{3}{ }^{4}$ each have a similar stereochemistry. However, apart from complexes with sulphurcontaining ligands, this unusual co-ordination geometry has been confirmed only for the ZnII ion in the cis, cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexanezinc(II) dication ${ }^{5}$ and for the central $\mathrm{CoII}^{\mathrm{II}}$ ion in [$\mathrm{CoII}\left\{\mathrm{CoIII}^{-1 I} \mathrm{OCH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\left.\mathrm{NH}_{2}\right)_{3}\right\}_{2}{ }^{2+}{ }^{2} .{ }^{6}$

Figure 1. Structure of $\left.\left[\left\{\mathrm{FB}\left(\mathrm{ONCH} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}\right)\right)_{3} \mathrm{P}\right\} \mathrm{Ni}^{1 \mathrm{II}+}\right]\left[\mathrm{BF}_{4}-\right]$, viewed down ' b '. The approximate C_{3} axis is vertical. Mean bond lengths \ddagger within the hexadentate ligand are: $\mathrm{F}-\mathrm{B}=1 \cdot 378(17)$, $\mathrm{B}-\mathrm{O}=1 \cdot 473(18), \mathrm{O}-\mathrm{N}(1)=1 \cdot 372(11), \mathrm{N}(1)-\mathrm{C}(1)=1 \cdot 303(14)$, $\mathrm{C}(1)-\mathrm{C}(2)=1 \cdot 457(15), \mathrm{C}(2)-\mathrm{C}(3)=1 \cdot 383(16), \mathrm{C}(3)-\mathrm{C}(4)=1 \cdot 388$ (18), $\mathrm{C}(4)-\mathrm{C}(5)=1 \cdot 368(18), \mathrm{C}(5)-\mathrm{C}(6)=1 \cdot 400(16), \mathrm{C}(6)-\mathrm{N}(2)=$ $1 \cdot 364(12), \mathrm{N}(2)-\mathrm{C}(2)=1.335(13)$, and $\mathrm{C}(6)-\mathrm{P}=1.837(10) \AA$.

Holm and his co-workers ${ }^{7}$ have recently prepared $\mathrm{Fe}^{\mathrm{II}}$, $\mathrm{CoII}, \mathrm{NiII}$, and $\left.\mathrm{Zn} \mathrm{II}^{\left(d^{6},\right.} d^{7}, d^{8}, d^{10}\right)$ complexes of the bicyclic hexadentate $\left[\mathrm{FB}\left(\mathrm{O} \ddot{\mathrm{N}} \mathrm{CH} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \ddot{\mathrm{~N}}\right)_{3} \mathrm{P}-\right]$ ligand, in which the transition-metal ion is 'encapsulated's by the ligand; studies with molecular models had previously indicated that the six donor nitrogen atoms would most probably be arranged about the central metal atom with approximately trigonal-prismatic geometry. We have therefore undertaken a single-crystal X-ray diffraction study of [\{FB$\left.\left.\left(\mathrm{ONCH} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{NiII}^{+}\right]\left[\mathrm{BF}_{4}^{-}-\right]$to ascertain how closely the nickel co-ordination sphere approaches the ideal trigonal prismatic case.

Crystal data: $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{5} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{PNi}, M 566 \cdot 63$, monoclinic,
$a=13.30, \quad b=17.86, \quad c=10.58 \AA, \quad \beta=108.7^{\circ}, \quad U=$ $2380.5 \AA^{3}, \quad D_{\mathrm{m}}=1.65 \pm 0.10, \quad D_{\mathrm{c}}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4$ space group $P 2_{1} / c\left(C_{2 h}^{5} ;\right.$ No. 14).

Diffraction data ($\sin \theta_{\max }=0 \cdot 80, \mathrm{Cu}-K_{\alpha}$ radiation) were collected on a 0.01°-incrementing Supper-Pace "Buerger Automated Diffractometer" using equi-inclination Weissenberg geometry and a stationary-background, ω-scan, stationary-background counting sequence. All data were corrected for absorption ($\mu=25 \cdot 8 \mathrm{~cm}^{-1}$) and the structure was solved by conventional Patterson, Fourier, and leastsquares refinement techniques. All atoms (including hydrogens) have been located; following refinement of positional and anisotropic thermal parameters of all nonhydrogen atoms, the discrepancy index is $R=7 \cdot 32 \%$ for the 1781 independent non-zero reflections.

As shown in Figure 1, each of the 2-carboxaldiminopyridyl moieties is approximately (r.m.s. deviation ca. $0.03 \AA$) planar and the nickel-containing cation approximates to $C_{3 v}$ symmetry. The six nitrogen atoms are arranged around

Figure 2. The NiN_{6} core of the molecule, showing the slight deviations from a truly trigonal prismatic co-ordination geometry.
 prism.

The two triangular faces of the 'tapered trigonal prism' are within $\mathbf{1} \cdot \mathbf{6}^{\circ}$ of the ideal eclipsed orientation (see Figure 2). The mean $\mathrm{Ni}-\mathrm{N}(1) \ddagger$ distance is $2.030(8) \AA$, the $\mathrm{Ni}-\mathrm{N}(2)$ distance being $2 \cdot 043(8) \AA$. The average $\mathrm{N} \cdots \mathrm{N}$ contact within the plane defined by $\mathrm{N}(1), \mathrm{N}\left(1^{\prime}\right)$, and $\mathrm{N}\left(1^{\prime \prime}\right)$ is $2 \cdot 678(12) \AA$, whereas that within the $\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)$ plane is $2.848(11) \AA$; the larger distance between nitrogen atoms of the pyridyl rings is principally a result of angular requirements about the phosphorus atom, the mean $\mathrm{C}(6)-\mathrm{P}-\mathrm{C}\left(6^{\prime}\right)$ angle being $99 \cdot 2(0 \cdot 4)^{\circ}$. Angles \ddagger within the NiN_{6} core of the molecule $\left[\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}\left(1^{\prime}\right)=82.5(0.3)\right.$, $\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}\left(2^{\prime}\right)=88 \cdot 4(0 \cdot 3)$, and $\left.\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)=76 \cdot 8(0 \cdot 3)^{\circ}\right]$ are remarkably similar to those found within the ZnN_{6} core of the rather less constrained tris(pyridine-2-carboxaldimino)cyclohexanezinc(II) cation. ${ }^{5}$

[^0]The co-ordination environment of the central iron atom in the [$\left\{\mathrm{F} \cdot \mathrm{B}\left(\mathrm{ONCH} \cdot \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Fe}^{\mathrm{II}+}$] cation is currently under study; in this d^{6} case, the ligand-field stabilization energy afforded by an octahedral, as opposed to trigonal-prismatic, co-ordination geometry is maximized.

We thank Professor R. H. Holm for the sample and for providing a copy of his manuscript (ref. 7) prior lto publication. Financial support was provided by the Advanced Research Projects Agency.
(Received, May 20th, 1970; Com. 781.)
${ }^{1}$ R. G. Dickinson and L. Pauling, J. Amer. Chem. Soc., 1923, 45, 1466.
${ }^{2}$ R. Eisenberg and J. A. Ibers, J. Amer. Chem. Soc., 1965, 87, 3776 ; Inorg. Chem., 1966, 5, 411.
${ }^{3}$ A. E. Smith, G. N. Schrauzer, V. P. Mayweg, and W. Heinrich, J. Amer. Chem. Soc., 1965, 87, 5798.
${ }^{4}$ R. Eisenberg, E. I. Stiefel, R. C. Rosenberg, and H. B. Gray, J. Amer. Chem. Soc., 1966, 88, 2874; R. Eisenberg and H. B. Gray, Inorg. Chem., 1967, 6, 1844.
${ }^{5}$ W. O. Gillum, J. C. Huffman, W. E. Streib, and R. A. D. Wentworth, Chem. Comm., 1969, 843.
${ }^{6}$ J. A. Bertrand, J. A. Kelley, and E. G. Vassian, J. Amer. Chem. Soc., 1969, 91, 2394.
${ }^{7}$ J. E. Parks, B. E. Wagner, and R. H. Holm, J. Amer. Chem. Soc., 1970, 92, 3500.
${ }^{8}$ D. R. Boston and N. J. Rose, J. Amer. Chem. Soc., 1968, 90, 6859.

[^0]: \dagger Fellow of the Alfred P. Sloan Foundation, 1968-1970.
 \pm Both in the text and in the caption to Figure 1, average values from three independent bonds or angles (inter-related by the noncrystallographic C_{3} axis of the cation) are given.

